Need more? Try out  Advanced Search (20+ criteria)»

logo

Last Update

This profile was last updated on 9/15/2008 and contains contributions from the  Zoominfo Community.

is this you? Claim your profile.

Wrong John Clemens?

John D. Clemens

Professor

Kingston University

HQ Phone:  +44 20 8417 9000

Direct Phone: +44 ** **** ****direct phone

GET ZOOMINFO GROW

+ Get 10 Free Contacts a Month

Please agree to the terms and conditions.

I agree to the  Terms of Service and  Privacy Policy. I understand that I will receive a subscription to ZoomInfo Grow at no charge in exchange for downloading and installing the ZoomInfo Contact Contributor utility which, among other features, involves sharing my business contacts as well as headers and signature blocks from emails that I receive.

THANK YOU FOR DOWNLOADING!

computers
  • 1.Download
    ZoomInfo Grow
    v sign
  • 2.Run Installation
    Wizard
  • 3.Check your inbox to
    Sign in to ZoomInfo Grow

I agree to the Terms of Service and Privacy Policy. I understand that I will receive a subscription to ZoomInfo Community Edition at no charge in exchange for downloading and installing the ZoomInfo Contact Contributor utility which, among other features, involves sharing my business contacts as well as headers and signature blocks from emails that I receive.

Kingston University

Penrhyn Road

Kingston upon Thames, Greater London,KT1 2EE

United Kingdom

Company Description

With more than 25,000 students, Kingston University is the largest provider of higher education in South West London, offering an extensive range of undergraduate and postgraduate programs both in the United Kingdom and overseas. The university is renowned for... more

Find other employees at this company (3,827)

Web References(7 Total References)


Staff (Text-Only)

www.kingston.ac.uk [cached]

Professor John Clemens


Science - Kingston University London - Faculty Staff

www.kingston.ac.uk [cached]

Professor John Clemens Course Director, Joint Honours


www.kingston.ac.uk

Professor John Clemens Associate Dean (Research) E-mail: J.Clemens@kingston.ac.uk Phone: +44 (0)20 8547 2000 62023


monthlymeetings2002

www.farnhamgeosoc.org.uk [cached]

Prof. John ClemensKingston University


Farnham Geological Society

www.farnhamgeosoc.org.uk [cached]

Summary of February lecture given by Prof. John Clemens, Kingston UniversityDespite teasing us with the title of his presentation, John Clemens took us on a swift tour of the petrology of granites to demonstrate that they are, in fact, a remarkable group of rocks.After showing us slides of different granite landscapes Professor Clemens turned to the detail in the rocks with a short discussion of some of the enigmatic structures that can be seen in granite outcrops.Some features such as graded layering and cross layering of crystals can be explained by sedimentation and flow structures operating in the fluid magma.Other features are less well understood.These include orbicular structures, comb layering and ladder dykes, all of which Professor Clemens believes are created by rhythmic precipitation of mineral layers within volatile-rich patches of magma.Having shown us some of the variety that granites can exhibit in the landscape and outcrop, Professor Clemens posed the question: where do granites come from?Much of the thinking on this has been influenced by the work of N L Bowen who, with O F Tuttle, showed that granite could be formed by the melting of crustal rocks under pressure and temperature conditions found within the amphibolite facies of metamorphism.For this to happen the rocks have to be saturated with water but Professor Clemens' own research showed that instead of always being water saturated, granite magmas had water contents that were related to their melting temperatures.The drier the magma, the higher it's melting temperature.Further experimental research has shown that instead of water saturated melting in the amphibolite facies of metamorphism creating granite magmas, fluid-absent dehydration reactions in the much hotter granulite facies of metamorphism seem to be responsible.Professor Clemens described several possible dehydration reactions that could be responsible but in essence it is the OH-bearing minerals such as muscovite, biotite and hornblende which break down with increasing temperature to release a water-undersaturated granitic magma.The heat for such reactions could not be generated by deep burial of crustal rocks alone.Additional heat would be required from the mantle, most probably by the intrusion of mafic magma.Instead of regarding granite magmas as relatively cool bodies (around 6500C according to Bowen), the dehydration reactions suggest that temperatures of granite magma may vary between 700 and 11000C.Rocks that are undergoing this high temperature melting show both metamorphic and magmatic features.Professors Clemens showed slides of several of these mixed rocks, or migmatites as they are known, which revealed how the new granite magma is localised in patches throughout the melting rock.Professor Clemens described ascent rates of 20km in hours to just a few months.He also explained that such ascent rates could build a granite pluton of 1000km3 in a little over 1000 years.While talking about granite statistics, Professor Clemens told us that a 3 km thick sheet of granite magma in the upper crust could go from a liquid state to a solid state (though still hot) in about 30,000 years.


Similar Profiles

city

Browse ZoomInfo's Business
Contact Directory by City

city

Browse ZoomInfo's
Business People Directory

city

Browse ZoomInfo's
Advanced Company Directory