Share This Profile
Share this profile on Facebook.
Link to this profile on LinkedIn.
Tweet this profile on Twitter.
Email a link to this profile.
See other services through which you can share this profile.
This profile was last updated on 1/15/16  and contains information from public web pages and contributions from the ZoomInfo community.

Prof. Jeffrey C. Grossman

Wrong Prof. Jeffrey C. Grossman?

Department of Materials Science a...

Phone: (617) ***-****  
Email: j***@***.edu
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge , Massachusetts 02139
United States

Company Description: The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world...   more
Background

Employment History

Board Memberships and Affiliations

193 Total References
Web References
The finding, by MIT professor ...
www.physlink.com, 15 Jan 2016 [cached]
The finding, by MIT professor Jeffrey Grossman, postdoc David Zhitomirsky, and graduate student Eugene Cho, is described in a paper in the journal Advanced Energy Materials.
...
Such chemically-based storage materials, known as solar thermal fuels (STF), have been developed before, including in previous work by Grossman and his team.
...
The material they ended up with is highly transparent, which could make it useful for de-icing car windshields, says Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems and a professor of materials science and engineering.
...
Then, "when you trigger it," using just a small amount of heat that could be provided by a heating wire or puff of heated air, "you get this blast of heat," Grossman says. "We did tests to show you could get enough heat to drop ice off a windshield. Accomplishing that, he explains, doesn't require that all the ice actually be melted, just that the ice closest to the glass melts enough to provide a layer of water that releases the rest of the ice to slide off by gravity or be pushed aside by the windshield wipers.
The team is continuing to work on improving the film's properties, Grossman says. The material currently has a slight yellowish tinge, so the researchers are working on improving its transparency. And it can release a burst of about 10 degrees Celsius above the surrounding temperature - sufficient for the ice-melting application - but they are trying to boost that to 20 degrees.
Already, the system as it exists now might be a significant boon for electric cars, which devote so much energy to heating and de-icing that their driving ranges can drop by 30 percent in cold conditions. The new polymer could significantly reduce that drain, Grossman says.
CECAM - Workshop details
www.cecam.org, 27 Jan 2015 [cached]
Jeffrey C. Grossman, Massachusetts Institute of Technology, USA. "New Materials for Solar Capture and Storage"
The finding, by MIT professor ...
www.rdmag.com, 7 Jan 2016 [cached]
The finding, by MIT professor Jeffrey Grossman, postdoc David Zhitomirsky, and graduate student Eugene Cho, is described in a paper in the journal Advanced Energy Materials.
...
Such chemically-based storage materials, known as solar thermal fuels (STF), have been developed before, including in previous work by Grossman and his team.
...
The material they ended up with is highly transparent, which could make it useful for de-icing car windshields, says Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems and a professor of materials science and engineering.
...
Then, "when you trigger it," using just a small amount of heat that could be provided by a heating wire or puff of heated air, "you get this blast of heat," Grossman says. "We did tests to show you could get enough heat to drop ice off a windshield. Accomplishing that, he explains, doesn't require that all the ice actually be melted, just that the ice closest to the glass melts enough to provide a layer of water that releases the rest of the ice to slide off by gravity or be pushed aside by the windshield wipers.
The team is continuing to work on improving the film's properties, Grossman says. The material currently has a slight yellowish tinge, so the researchers are working on improving its transparency. And it can release a burst of about 10 degrees Celsius above the surrounding temperature - sufficient for the ice-melting application - but they are trying to boost that to 20 degrees.
Already, the system as it exists now might be a significant boon for electric cars, which devote so much energy to heating and de-icing that their driving ranges can drop by 30 percent in cold conditions. The new polymer could significantly reduce that drain, Grossman says.
When Jeffrey Grossman, a ...
genesisnanotech.com, 1 Nov 2015 [cached]
When Jeffrey Grossman, a professor at MIT's Department of Materials Science and Engineering (DMSE), began looking into whether new materials might reduce the cost of desalination, he was surprised to find how little research and development money was being applied to the problem.
"A billion people around the world lack regular access to clean water, and that's expected to more than double in the next 25 years," Grossman says.
...
"It's never been a more exciting time to be a materials scientist," says Grossman.
...
"It's stronger than steel, and it has unique sieving properties," Grossman says. At only an atom thick, there's far less friction loss when you push seawater through a perforated graphene filter compared with the polyamide plastic filters that have been used for the last 50 years, he says.
"We have shown that perforated graphene filters can handle the water pressures of desalination plants while offering hundreds of times better permeability," Grossman explains.
...
According to Grossman, you could easily replace polyamide filters with graphene filters in existing plants. Like polyamide filters, graphene filters can be mounted on robust polysulfone supports, which have larger holes that sieve out particulates.
"We have shown that perforated graphene filters can handle the water pressures of desalination plants while offering hundreds of times better permeability," Grossman explains.
...
According to Grossman, you could easily replace polyamide filters with graphene filters in existing plants.
...
"A typical plant has tens of thousands of membranes, configured in two-meter long tubes, each of which has 40 square meters of rolled up active membrane," Grossman says. "We have to match that volume at the same cost, or it's a nonstarter."
Making graphene on the cheap
The traditional way to make graphene-since its first isolation in 2003, mind you-is to peel it off with adhesive. "You literally take a piece of Scotch Tape to graphite and you peel," Grossman explains. "If you keep doing this, you eventually wind up with a single layer. The problem is it would take forever to peel off enough graphene for a desalination plant."
Another approach is to "grow" graphene by applying super-hot gases to copper foil. "Growing graphene provides the best quality, which is why the semiconductor industry is interested in it," Grossman says. The process, however, is very expensive and energy-intensive.
Instead, the Grossman Group is using a much more affordable chemical approach, which produces sufficient quality for creating desalination membranes. "Fortunately, our application doesn't require the best quality," says Grossman.
...
"The challenge is to find the sweet spot of about 0.8 nanometers," Grossman says. "If your pores are at 1.5 nm, then both the water and salt will pass through. If they're half a nanometer, then nothing gets through."
A 0.8 nm hole is "smaller than we've ever been able to make in a controllable way with any other material," Grossman says. "And we need to do this over a very large area very consistently and cheaply."
The Grossman Group is pursuing three techniques to make nanoporous graphene membranes, all of which use chemical and thermal energy rather than mechanical processes. "If you tried to use lithography, it would take years," Grossman says.
...
"By controlling the way the oxygen is bonded to the graphene sheet, we can use chemical and thermal energy to drill the holes with the help of the oxygen," Grossman says.
First target: Brackish water
As the Grossman Group continues to work on the challenge of manufacturing and perforating graphene sheets, Grossman is looking to leverage other benefits of graphene filters to help bring the technology to market.
Although graphene should improve efficiency with seawater and the even saltier, dirtier water used in hydraulic fracturing, it will likely debut in plants that clean brackish water, such as found in estuaries. "It turns out that higher permeability even by a factor of two or three would make a bigger difference with brackish water than with seawater," Grossman says. "You lower the energy consumption in both cases, but more so for brackish water."
Graphene filters could also enable the construction of smaller, cheaper plants. "With graphene you have more choices in how you operate the plant," Grossman says. "You could apply the same pressures but get more water out, or you could operate it at lower pressures and get the same amount of water, but at a lower energy cost."
Grossman notes that it can take years or even decades to site and permit a plant in heavily populated coastal areas. "A lot of effort goes into how you're going to build the plant and where you're going to find enough land," Grossman says.
Atom-thick photovoltaic sheets could pack hundreds of times more power per weight than conventional solar cells.
www.understandingnano.com, 14 Sept 2013 [cached]
Jeffrey Grossman, the Carl Richard Soderberg Associate Professor of Power Engineering at MIT, says the new approach "pushes towards the ultimate power conversion possible from a material" for solar power. Grossman is the senior author of a new paper describing this approach, published in the journal Nano Letters.
Although scientists have devoted considerable attention in recent years to the potential of two-dimensional materials such as graphene, Grossman says, there has been little study of their potential for solar applications. It turns out, he says, "they're not only OK, but it's amazing how well they do."
The MIT team found that an effective solar cell could be made from a stack of two one-molecule-thick materials: Graphene (a one-atom-thick sheet of carbon atoms, shown at bottom in blue) and molybdenum disulfide (above, with molybdenum atoms shown in red and sulfur in yellow). The two sheets together are thousands of times thinner than conventional silicon solar cells. Graphic: Jeffrey Grossman and Marco Bernardi
...
Using two layers of such atom-thick materials, Grossman says, his team has predicted solar cells with 1 to 2 percent efficiency in converting sunlight to electricity, That's low compared to the 15 to 20 percent efficiency of standard silicon solar cells, he says, but it's achieved using material that is thousands of times thinner and lighter than tissue paper.
...
At about one nanometer (billionth of a meter) in thickness, "It's 20 to 50 times thinner than the thinnest solar cell that can be made today," Grossman adds.
...
The MIT team's work so far to demonstrate the potential of atom-thick materials for solar generation is "just the start," Grossman says. For one thing, molybdenum disulfide and molybdenum diselenide, the materials used in this work, are just two of many 2-D materials whose potential could be studied, to say nothing of different combinations of materials sandwiched together. "There's a whole zoo of these materials that can be explored," Grossman says. "My hope is that this work sets the stage for people to think about these materials in a new way."
While no large-scale methods of producing molybdenum disulfide and molybdenum diselenide exist at this point, this is an active area of research. Manufacturability is "an essential question," Grossman says, "but I think it's a solvable problem."
An additional advantage of such materials is their long-term stability, even in open air; other solar-cell materials must be protected under heavy and expensive layers of glass. "It's essentially stable in air, under ultraviolet light, and in moisture," Grossman says. "It's very robust."
The work so far has been based on computer modeling of the materials, Grossman says, adding that his group is now trying to produce such devices. "I think this is the tip of the iceberg in terms of utilizing 2-D materials for clean energy" he says.
Other People with the name "Grossman":
Other ZoomInfo Searches
Accelerate your business with the industry's most comprehensive profiles on business people and companies.
Find business contacts by city, industry and title. Our B2B directory has just-verified and in-depth profiles, plus the market's top tools for searching, targeting and tracking.
Atlanta | Boston | Chicago | Houston | Los Angeles | New York
Browse ZoomInfo's business people directory. Our professional profiles include verified contact information, biography, work history, affiliations and more.
Browse ZoomInfo's company directory. Our company profiles include corporate background information, detailed descriptions, and links to comprehensive employee profiles with verified contact information.
zirhbt201304