Share This Profile
Share this profile on Facebook.
Link to this profile on LinkedIn.
Tweet this profile on Twitter.
Email a link to this profile.
See other services through which you can share this profile.
This profile was last updated on 9/15/13  and contains information from public web pages.

Scientific Advisory Board Member

Phone: (650) ***-****  HQ Phone
Photoswitch Biosciences Inc
1600 Adams Drive
Menlo Park, California 94025
United States

 
Background

Employment History

  • Professor of Neurobiology and Chair
    University of California , Berkeley
  • Professor of Biophysics
    University of California , Berkeley
  • TREK1 Specialist
    National
  • Professor of Neurobiology and Chair
    Graduate Group
  • QB3

Board Memberships and Affiliations

  • Board Member
    University of California , Berkeley

Education

  • PhD.
31 Total References
Web References
Photoswitch Biosciences, Inc.
www.photoswitchbio.com, 15 Sept 2013 [cached]
Ehud Isacoff, PhD. Co-founder. Professor and Head of Division of Neurobiology, UC Berkeley; Member, Lawrence Berkeley National Laboratory; Director of UC Berkeley-LBNL Nanomedicine Development Center. Internationally recognized expert in ion channels and synaptic function. Co-inventor of photoswitched ion channels.
To learn more about Ehud Isacoff, please take a look at his UC Berkeley page and Isacoff Lab website.
Faculty | QB3
www.qb3.org, 15 Sept 2013 [cached]
Ehud Isacoff
Kerentech
www.kerentech.com, 5 April 2011 [cached]
Ehud Isacoff, Professor of Neurobiology and Chair, Graduate Group in Biophysics at Berkeley
Using a unique and relatively simple cell-based fluorescent assay they developed, scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC), Berkeley have identified a means by which fluoxetine, the active ingredient in Prozac, suppresses the activity of the TREK1 potassium channel. TREK1 activity has been implicated in mood regulation and could be an important target for fluoxetine and other antidepressant drugs.
"Whereas the inhibiting of serotonin re-uptake remains fluoxetine's primary antidepression mechanism, many pharmacological agents have more than one target," says Ehud Isacoff, a neurobiophysicist who holds joint appointments with Berkeley Lab's Physical Biosciences Division and UC Berkeley's Department of Molecular and Cell Biology. "Our study shows that the inhibition of TREK1 by fluoxetine, which was found in earlier studies, is accompanied by an unbinding of the protein's C-terminal domain from the membrane. This is the first observation of the mechanism by which TREK1 might be regulated by antidepressant drugs."
Isacoff is the corresponding author on a paper reporting the results of this study that appears in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled "Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Co-authoring this paper were Guillaume Sandoz, a TREK1 specialist with France's National Center for Scientific Research at the Institute for Molecular and Cellular Physiology, and PhD student Sarah Bell, both of whom were with Isacoff's research group at the time the work was done.
...
"Studying what the different protein parts of an ion channel do is a huge challenge," Isacoff says. "Over the years, my group has developed techniques by which the domains of channel proteins can be labeled with site-specific fluorescent dyes. Structural rearrangements of the labeled sites in the channel can then be detected through changes in the fluorescence."
Isacoff and his group separated the C-terminal domain from the rest of the protein and tagged it with a green fluorescent protein (GFP) - a fluorescent protein from jellyfish commonly used to paint cells green for biological studies. Whereas the pore of the TREK1 ion channel is embedded in the plasma membrane of a neuron, the C-terminal is a short tail that protrudes out into the surrounding cytoplasm.
Using voltage clamps to measure electrical currents through the channel and fluorescence to monitor the disposition of the C-terminal domain, Isacoff and his group found that when the C-terminal tail is fully bound to the plasma membrane, the TREK1 potassium channel opens more; when the tail is unbound from the plasma membrane, the ion channel tends to close.
"We found that fluoxetine causes the isolated C-terminal domain to unbind from the membrane and also causes an inhibition of current from the full TREK1 channel," Isacoff says.
The next step will be to see how the C-terminal tail is affected by the presence of fluoxetine when the tail is still attached to the rest of the TREK1 protein. In the meantime, Isacoff and his team feel they now have a valuable assay that can be used to monitor the reversible plasma membrane association of protein domains without the need for scanning, optical slicing or imaging.
"Pharmaceutical companies screening for potential new drugs, such as improved antidepressants, prefer assays that are fast and simple," Isacoff says.
Ehud Isacoff, a professor of ...
wickware.home.att.net, 25 Sept 2000 [cached]
Ehud Isacoff, a professor of biophysics at Berkeley and a principal investigator on the NSF grant, added that because computational genomics and structural biology do not yet interact closely enough, the two programs' synergies will be valuable. "We still know virtually nothing about how proteins really operate in the cell," he said.
"We're beginning to get the picture that events are mediated by as many as 30 or 40 proteins stuck together in very particular ways," Isacoff added.
The training programs will help generate not only the new methodologies to understand how the complexes form and communicate, but also "a whole new breed of scientists who can think about them as concrete objects, having specific structures and interactions and moving in real time," Isacoff said.
Ehud Isacoff, Professor of ...
www.kerentech.com, 9 Feb 2011 [cached]
Ehud Isacoff, Professor of Neurobiology and Chair, Graduate Group in Biophysics at Berkeley
Using a unique and relatively simple cell-based fluorescent assay they developed, scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC), Berkeley have identified a means by which fluoxetine, the active ingredient in Prozac, suppresses the activity of the TREK1 potassium channel. TREK1 activity has been implicated in mood regulation and could be an important target for fluoxetine and other antidepressant drugs.
"Whereas the inhibiting of serotonin re-uptake remains fluoxetine's primary antidepression mechanism, many pharmacological agents have more than one target," says Ehud Isacoff, a neurobiophysicist who holds joint appointments with Berkeley Lab's Physical Biosciences Division and UC Berkeley's Department of Molecular and Cell Biology. "Our study shows that the inhibition of TREK1 by fluoxetine, which was found in earlier studies, is accompanied by an unbinding of the protein's C-terminal domain from the membrane. This is the first observation of the mechanism by which TREK1 might be regulated by antidepressant drugs."
Isacoff is the corresponding author on a paper reporting the results of this study that appears in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled "Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Co-authoring this paper were Guillaume Sandoz, a TREK1 specialist with France's National Center for Scientific Research at the Institute for Molecular and Cellular Physiology, and PhD student Sarah Bell, both of whom were with Isacoff's research group at the time the work was done.
...
"Studying what the different protein parts of an ion channel do is a huge challenge," Isacoff says. "Over the years, my group has developed techniques by which the domains of channel proteins can be labeled with site-specific fluorescent dyes. Structural rearrangements of the labeled sites in the channel can then be detected through changes in the fluorescence."
Isacoff and his group separated the C-terminal domain from the rest of the protein and tagged it with a green fluorescent protein (GFP) - a fluorescent protein from jellyfish commonly used to paint cells green for biological studies. Whereas the pore of the TREK1 ion channel is embedded in the plasma membrane of a neuron, the C-terminal is a short tail that protrudes out into the surrounding cytoplasm.
Using voltage clamps to measure electrical currents through the channel and fluorescence to monitor the disposition of the C-terminal domain, Isacoff and his group found that when the C-terminal tail is fully bound to the plasma membrane, the TREK1 potassium channel opens more; when the tail is unbound from the plasma membrane, the ion channel tends to close.
"We found that fluoxetine causes the isolated C-terminal domain to unbind from the membrane and also causes an inhibition of current from the full TREK1 channel," Isacoff says.
The next step will be to see how the C-terminal tail is affected by the presence of fluoxetine when the tail is still attached to the rest of the TREK1 protein. In the meantime, Isacoff and his team feel they now have a valuable assay that can be used to monitor the reversible plasma membrane association of protein domains without the need for scanning, optical slicing or imaging.
"Pharmaceutical companies screening for potential new drugs, such as improved antidepressants, prefer assays that are fast and simple," Isacoff says.
Other People with the name "Isacoff":
Other ZoomInfo Searches
Accelerate your business with the industry's most comprehensive profiles on business people and companies.
Find business contacts by city, industry and title. Our B2B directory has just-verified and in-depth profiles, plus the market's top tools for searching, targeting and tracking.
Atlanta | Boston | Chicago | Houston | Los Angeles | New York
Browse ZoomInfo's business people directory. Our professional profiles include verified contact information, biography, work history, affiliations and more.
Browse ZoomInfo's company directory. Our company profiles include corporate background information, detailed descriptions, and links to comprehensive employee profiles with verified contact information.
zirhbt201304