Need more? Try out  Advanced Search (20+ criteria)»

logo

Last Update

This profile was last updated on 5/22/2017 and contains contributions from the  Zoominfo Community.

is this you? Claim your profile.

Wrong Earl Sager?

Earl V. Sager

Consultant

System Planning Corporation

HQ Phone:  (703) 351-8200

GET ZOOMINFO GROW

+ Get 10 Free Contacts a Month

Please agree to the terms and conditions.

I agree to the  Terms of Service and  Privacy Policy. I understand that I will receive a subscription to ZoomInfo Grow at no charge in exchange for downloading and installing the ZoomInfo Contact Contributor utility which, among other features, involves sharing my business contacts as well as headers and signature blocks from emails that I receive.

THANK YOU FOR DOWNLOADING!

computers
  • 1.Download
    ZoomInfo Grow
    v sign
  • 2.Run Installation
    Wizard
  • 3.Check your inbox to
    Sign in to ZoomInfo Grow

I agree to the Terms of Service and Privacy Policy. I understand that I will receive a subscription to ZoomInfo Community Edition at no charge in exchange for downloading and installing the ZoomInfo Contact Contributor utility which, among other features, involves sharing my business contacts as well as headers and signature blocks from emails that I receive.

System Planning Corporation

3601 Wilson Blvd Ste 200

Arlington, Virginia,22201

United States

Company Description

SPC provides technical, programmatic, and financial support to two classified programs: Multi-Optical Sensing (MOS): The program involves the development and demonstration of an optical radar for air-to-air engagement. The research will investigate innovativ...more

Background Information

Employment History

Community Reviewer

SciTech Publishing Inc


Stealth Fighter

F-117A


Research Assistant

University of Maryland


Web References(5 Total References)


Richards Principles of Modern Radar 9781891121524

scitechpublishing.com [cached]

Dr. Earl Sager (System Planning Corporation)


System Planning Corporation Home Page

www.sysplan.com [cached]

Dr. Earl V. Sager, Chief Scientist
System Planning Corporation Home Page Earl V. Sager As Group Vice President and Chief Scientist of the Radar Physics Group Dr. Sager directs a group of about 30 people responsible for the design, development, manufacture and operation of advanced instrumentation radar and related systems. This group also develops software and analytic techniques to support those systems. Dr. Sager performs systems analysis, develops high-throughput data processing software, performs research, and conducts radar field measurements using advanced signal processing techniques. He has managed SPC programs for support of the Air Force's advanced cruise missile imaging radar system (AIRS), DARPA studies concerning millimeter wave imaging, and the delivery of a MkV radar system to British Aerospace. He was involved in the development and testing of SPC's MK V radar system, the development of a generic threat simulator, and the analysis of low-observable diagnostics for the Advanced Cruise Missile (ACM) and F-117A. He has also been involved with advanced concept proposals for ground penetrating radar and radar imaging for aircraft landing systems. Dr. Sager has lead field tests using SPC mobile radars and the data processing programs that have followed. These tests have included collection and processing of UHF data over a long synthetic aperture to generate images of clutter scenes; collection and processing of microwave doppler data from collisions of rocket sled powered kill vehicles with stationary targets; collection and processing of Ka band turntable data of aircraft; collection and processing of X-band turntable data of ground mobile targets. Dr. Sager developed the program structure for SPC's MK I-IV series of radar cross section (RCS) instrumentation systems used to collect and process ISAR data. These systems provide high-resolution, two-dimensional radar images from complex reflecting bodies. Dr. Sager has extended the imaging capability to include editing, reconstruction, and complex transformation of images. These capabilities provide greater insight into the scattering mechanism of complex targets. These efforts contributed to the development of the Air Force B-2 stealth bomber. The processing algorithms that Dr. Sager has developed have been implemented on a variety of mini- and supermini-computers with and without array processors, Intel PCs, and transputers. Dr. Sager has developed processing techniques based on ISAR imaging that can be implemented for use with automated quality control systems for low-observable (LO) vehicles. He has led studies related to diagnostic RCS testing of the Air Force's advanced cruise missile (ACM) and the F-117A stealth fighter. He has extended the application of SPC's radar signal processing software to polarimetric processing, which is of critical importance for detectability and signature evaluation. Prior to this, Dr. Sager completed a project devoted to analyzing the detectability of low-RCS targets within a clutter environment using a high-resolution airborne X-band radar. To aid the analysis, he designed a versatile signal processing emulator consisting of a set of FORTRAN-based programs designed to operate on a variety of minicomputers. For implementation on a DEC PDP-11/55, Dr. Sager wrote a set of assembly language routines for a Floating Point Systems AP-120B array processor to significantly increase the data reduction rate. The emulator has also been used on a VAX 11/780 32-bit computer. Dr. Sager made a major contribution to the software that displays the processed data field in an easily interpretable format on a RAMTEK color graphics display. The emulator was being used to simultaneously evaluate the tradeoffs between target detection and false alarms at multiple levels of adaptive constant false alarm rate (CFAR) thresholding and binary scan-to-scan integration. In other radar studies, Dr. Sager has analyzed the capability of a monopulse millimeter-wave radar exposed to various countermeasure techniques. In earlier work, Dr. Sager evaluated the limitations of IR detector material technology to determine whether improvements might be achieved in a low-gravity environment. This effort was part of an SPC study on the applications of materials processing in space being performed for NASA. Dr. Sager has also participated in analytic studies in the area of civil defense. These studies included an evaluation of the continuity of government in the event of nuclear attack and an assessment of blast and fallout damage to civilian populations of the United States during various scenarios of a nuclear war. As a Research Assistant at the University of Maryland from 1972-1978, Dr. Sager conducted his Ph.D. thesis research in the field of experimental particle physics and has extensive experience with various methods of particle detection using scintillation detectors, wire spark chambers, and drift chambers. This work required the reconstruction of charged-particle tracks passing through a magnetic field. Dr. Sager participated in experiments at Fermilab, the Space Radiation Effects Laboratory, and the Armed Forces Radio Biological Research Institute. Between 1969 and 1972, as a Combat Targeting Officer in the U.S. Air Force, Dr. Sager conducted various startup and maintenance procedures on the Minuteman III intercontinental ballistic missile system during its implementation at Minot Air Force Base. Dr. Sager was instrumental in the evaluation and reconfiguration of the chamber, located at Hill AFB, Utah, used for RCS diagnostics of the advanced cruise missile (ACM). He created special-purpose MathCad routines for estimating multipath within the chamber. Dr. Sager has also developed a range evaluation tool based on the use of a tethered orbiting sphere that is swung in a horizontal plane about a vertical axis. High-resolution range profiles of data collected from this sphere can be used to evaluate antenna beam characteristics and multipath. High-Speed Doppler Measurements. Dr. Sager was instrumental in the test planning and collection of high-speed doppler RCS data from debris created within the collision volume of a high-speed rocket and stationary target. These tests were conducted at the sled track at Holloman AFB, New Mexico. The data were used to evaluate kill assessment algorithms for use in missile interceptor-warhead encounters. Radar Signal Processing. Dr. Sager has been involved in numerous aspects of radar signal processing, including target detection in sea clutter using high-resolution techniques, radar image processing for LO diagnostics, Doppler processing for investigating signatures of rocket collisions, analysis of land clutter, and airborne imaging. Computer Architectures for Signal Processing. Dr. Sager has spent over 15 years adapting radar signal processing techniques to various computer architectures. These have included minicomputers such as the PDP-11 and HP1000, supermini-computers like the VAX and Gould computers, array processors such as the Floating Point Systems AP-120b and the CSPI MAP, various PCs from the 8088 to Pentiums, and parallel processing CPUs such as the INMOS Transputer. Polarimetric Processing. To more fully investigate radar signatures, Dr. Sager developed the capability to perform ISAR image processing of all co-pol and cross-pol components in parallel using transputers. ISAR Imaging Techniques. Dr. Sager developed much of the ISAR image processing for SPC's first imaging radar, the MK III, and has adapted it to all of the other MK series radars. He has developed techniques such as image edit and reconstruction and explored the use of interferometric image processing and ground penetration imaging.


SciTech Publishing, Inc.

www.scitechpub.com [cached]

Earl Sager - Consultant, USA


SciTech Publishing, Inc.

www.scitechpub.com [cached]

Dr. Earl Sager, Radar Physics Group Chief Scientist - System Planning Corporation


Earl V. Sager

www1.sysplan.com [cached]

Dr. Earl V. Sager , Group Vice PresidentEarl V. SagerEarl V. SagerAs Group Vice President and Chief Scientist of the Radar Physics Group Dr. Sager directs a group of about 30 people responsible for the design , development , manufacture and operation of advanced instrumentation radar and related systems.This group also develops software and analytic techniques to support those systems.Dr. Sager performs systems analysis , develops high-throughput data processing software , performs research , and conducts radar field measurements using advanced signal processing techniques.He has managed SPC programs for support of the Air Force's advanced cruise missile imaging radar system , DARPA studies concerning millimeter wave imaging , and the delivery of a MkV radar system to British Aerospace.He was involved in the development and testing of SPC's MK V radar system , the development of a generic threat simulator , and the analysis of low-observable diagnostics for the Advanced Cruise Missile and F-117A.He has also been involved with advanced concept proposals for ground penetrating radar and radar imaging for aircraft landing systems.Dr. Sager has lead field tests using SPC mobile radars and the data processing programs that have followed.These tests have included collection and processing of UHF data over a long synthetic aperture to generate images of clutter scenes ; collection and processing of microwave doppler data from collisions of rocket sled powered kill vehicles with stationary targets ; collection and processing of Ka band turntable data of aircraft ; collection and processing of X-band turntable data of ground mobile targets.Dr. Sager developed the program structure for SPC's MK I-IV series of radar cross section instrumentation systems used to collect and process ISAR data.These systems provide high-resolution , two-dimensional radar images from complex reflecting bodies.Dr. Sager has extended the imaging capability to include editing , reconstruction , and complex transformation of images.These capabilities provide greater insight into the scattering mechanism of complex targets.These efforts contributed to the development of the Air Force B-2 stealth bomber.The processing algorithms that Dr. Sager has developed have been implemented on a variety of mini- and supermini-computers with and without array processors , Intel PCs , and transputers.Dr. Sager has developed processing techniques based on ISAR imaging that can be implemented for use with automated quality control systems for low-observable vehicles.He has led studies related to diagnostic RCS testing of the Air Force's advanced cruise missile and the F-117A stealth fighter.He has extended the application of SPC's radar signal processing software to polarimetric processing , which is of critical importance for detectability and signature evaluation.Prior to this , Dr. Sager completed a project devoted to analyzing the detectability of low-RCS targets within a clutter environment using a high-resolution airborne X-band radar.To aid the analysis , he designed a versatile signal processing emulator consisting of a set of FORTRAN-based programs designed to operate on a variety of minicomputers.For implementation on a DEC PDP-11/55 , Dr. Sager wrote a set of assembly language routines for a Floating Point Systems AP-120B array processor to significantly increase the data reduction rate.The emulator has also been used on a VAX 11/780 32-bit computer.Dr. Sager made a major contribution to the software that displays the processed data field in an easily interpretable format on a RAMTEK color graphics display.The emulator was being used to simultaneously evaluate the tradeoffs between target detection and false alarms at multiple levels of adaptive constant false alarm rate thresholding and binary scan-to-scan integration.In other radar studies , Dr. Sager has analyzed the capability of a monopulse millimeter-wave radar exposed to various countermeasure techniques.In earlier work , Dr. Sager evaluated the limitations of IR detector material technology to determine whether improvements might be achieved in a low-gravity environment.This effort was part of an SPC study on the applications of materials processing in space being performed for NASA.Dr. Sager has also participated in analytic studies in the area of civil defense.These studies included an evaluation of the continuity of government in the event of nuclear attack and an assessment of blast and fallout damage to civilian populations of the United States during various scenarios of a nuclear war.As a Research Assistant at the University of Maryland from 1972-1978 , Dr. Sager conducted his Ph.D. thesis research in the field of experimental particle physics and has extensive experience with various methods of particle detection using scintillation detectors , wire spark chambers , and drift chambers.This work required the reconstruction of charged-particle tracks passing through a magnetic field.Dr. Sager participated in experiments at Fermilab , the Space Radiation Effects Laboratory , and the Armed Forces Radio Biological Research Institute.Between 1969 and 1972 , as a Combat Targeting Officer in the U.S. Air Force , Dr. Sager conducted various startup and maintenance procedures on the Minuteman III intercontinental ballistic missile system during its implementation at Minot Air Force Base.Education , Honors , AwardsPh.D. , Physics , University of Maryland , 1979M.A. , Physics , State University of New York at Buffalo , 1969B.A. , Physics , State University of New York at Buffalo , 1967Dr. Sager was instrumental in the evaluation and reconfiguration of the chamber , located at Hill AFB , Utah , used for RCS diagnostics of the advanced cruise missile.He created special-purpose MathCad routines for estimating multipath within the chamber.Dr. Sager has also developed a range evaluation tool based on the use of a tethered orbiting sphere that is swung in a horizontal plane about a vertical axis.High-resolution range profiles of data collected from this sphere can be used to evaluate antenna beam characteristics and multipath.High-Speed Doppler Measurements.Dr. Sager was instrumental in the test planning and collection of high-speed doppler RCS data from debris created within the collision volume of a high-speed rocket and stationary target.These tests were conducted at the sled track at Holloman AFB , New Mexico.The data were used to evaluate kill assessment algorithms for use in missile interceptor-warhead encounters.Radar Signal Processing.Dr. Sager has been involved in numerous aspects of radar signal processing , including target detection in sea clutter using high-resolution techniques , radar image processing for LO diagnostics , Doppler processing for investigating signatures of rocket collisions , analysis of land clutter , and airborne imaging.Computer Architectures for Signal Processing.Dr. Sager has spent over 15 years adapting radar signal processing techniques to various computer architectures.These have included minicomputers such as the PDP-11 and HP1000 , supermini-computers like the VAX and Gould computers , array processors such as the Floating Point Systems AP-120b and the CSPI MAP , various PCs from the 8088 to Pentiums , and parallel processing CPUs such as the INMOS Transputer.Polarimetric Processing.To more fully investigate radar signatures , Dr. Sager developed the capability to perform ISAR image processing of all co-pol and cross-pol components in parallel using transputers.ISAR Imaging Techniques.Dr. Sager developed much of the ISAR image processing for SPC's first imaging radar , the MK III , and has adapted it to all of the other MK series radars.He has developed techniques such as image edit and reconstruction and explored the use of interferometric image processing and ground penetration imaging.Over 30 Years of ExcellenceCopyright © 2001 System Planning Corporation | Site Search | JobsContact : webmaster@sysplan.com


Similar Profiles

city

Browse ZoomInfo's Business
Contact Directory by City

city

Browse ZoomInfo's
Business People Directory

city

Browse ZoomInfo's
Advanced Company Directory