Share This Profile
Share this profile on Facebook.
Link to this profile on LinkedIn.
Tweet this profile on Twitter.
Email a link to this profile.
See other services through which you can share this profile.
This profile was last updated on 4/22/14  and contains information from public web pages and contributions from the ZoomInfo community.

Dr. David B. Cline

Wrong Dr. David B. Cline?

Professor of Physics

UCLA College of Letters and Science
Phone: (310) ***-****  HQ Phone
Email: d***@***.edu
325 Westwood Plaza
Los Angeles , California 90095
United States

Company Description: Founded in 1949, UCLA School of Law is the youngest major law school in the nation and has established a tradition of innovation in its approach to teaching,...   more

Employment History

  • Elementary Particle Physicist
  • Member, Department of Physics and Astronomy


  • Ph.D.
  • Ph.D
74 Total References
Web References
possible evidence of dark matter | The Global Tribune, 22 April 2014 [cached]
David Cline, a professor physics at UCLA College of Letters and Science and a world renowned expert on dark matter said that the particle would have a mass of around 30 billion electron-volts. "There seems to be an excess in the available data that could be due to dark matter," Cline said.
Cline said that he hopes that he and his fellow scientists can clear the mystery surrounding dark matter by the 2016 syposium.
These UCLA professors, ..., 8 Oct 2013 [cached]
These UCLA professors, researchers, postdoctoral scholars and graduate students have built major portions of the CMS and made significant contributions to the research over a number of years, beginning with UCLA physics professor David Cline, who was one of the founders of the CMS two decades ago and remains an active researcher.
CAPS - All About the Mexicans, 28 Nov 2012 [cached]
In an opinion piece published in various newspapers not long after September 11, 2001, UCLA elementary particle physicist David Cline and I argued that prevention of illegal immigration should be an important component of any comprehensive strategy to protect U.S. cities from a nuclear holocaust.
Dr. David Cline, Department ..., 17 Aug 2012 [cached]
Dr. David Cline, Department of Physics and Astronomy, UCLA
The likely mass would be approximately ..., 10 Mar 2014 [cached]
The likely mass would be approximately 30 billion electron-volts, said the symposium's organizer, David Cline, a professor of physics in the UCLA College of Letters and Science and one of the world's experts on dark matter. The physicists at the Feb. 26-28 event were in agreement that "there seems to be an excess in the available data that could be due to dark matter," Cline said. "At this symposium, it was obvious that excitement is building in the fields of dark matter theory and, especially, detection," said Cline, who noted that there are several ways dark matter can be observed and that all were discussed at the UCLA meeting. "Because dark matter makes up the bulk of the mass of galaxies and is fundamental in the formation of galaxies and stars, it is essential to the origin of life in the universe and on Earth," Cline said. The first evidence for dark matter was discovered in 1933 using the Mt. Wilson telescope outside of Los Angeles. More recently, various theoretical models and detector improvements have made it possible to search for dark matter particles at extremely sensitive levels - some of the most sensitive measurements made by any scientists in the world. One search technique involves using the vast amount of dark matter in our galaxy. The NASA Fermi Satellite Telescope, an international collaboration involving NASA, the Goddard Space Flight Center and the SLAC National Accelerator Laboratory, searches for gamma rays - very high-energy light particles - from this dark matter. There are models of dark matter that would allow a signal in the galactic dark matter consistent with the claims at the meeting and provide a small interaction consistent with the "null results" in the direct dark matter searches all over the world. Much larger direct dark matter detectors are being planned in the U.S., Italy, Canada and China (including Xenon 3 Ton, LUX-ZEPLIN 7 Ton and DarkSide, which will weigh five tons). These larger detectors potentially could see a dark matter signal in the next few years, Cline said. Dark matter is widely thought to be a kind of massive elementary particle that interacts weakly with ordinary matter. Physicists refer to these particles as WIMPS, for weakly interacting massive particles, and think they originated from the Big Bang. WIMPs are thought to be streaming constantly through the solar system and the Earth. Another search method is to look for an interaction of a WIMP with xenon or argon nuclei and others (like germanium) in very low-background laboratories deep underground in Italy, the U.S., Canada, China and other countries. While these experiments have seen no signal of a WIMP above 30 billion electron volts, "there is no incompatibility with the interesting excess in the FERMI data," Cline said. The discovery of the Higgs boson, which won the 2013 Nobel Prize in physics, plays a role in the search for dark matter, Cline said, adding that this topic was discussed in detail at the meeting. Dark matter, he said, could consist of axions, WIMPs or sterile neutrinos, all of which were discussed at the symposium. The UCLA dark matter symposium is convened every two years; this was the 11th such meeting. Cline said he and his colleagues hope to clarify the dark matter puzzle at the 2016 symposium.  See more on last week's conference.
Other People with the name "Cline":
Other ZoomInfo Searches
Accelerate your business with the industry's most comprehensive profiles on business people and companies.
Find business contacts by city, industry and title. Our B2B directory has just-verified and in-depth profiles, plus the market's top tools for searching, targeting and tracking.
Atlanta | Boston | Chicago | Houston | Los Angeles | New York
Browse ZoomInfo's business people directory. Our professional profiles include verified contact information, biography, work history, affiliations and more.
Browse ZoomInfo's company directory. Our company profiles include corporate background information, detailed descriptions, and links to comprehensive employee profiles with verified contact information.