Need more? Try out  Advanced Search (20+ criteria)»

logo

Last Update

This profile was last updated on 12/6/2016 and contains contributions from the  Zoominfo Community.

is this you? Claim your profile.

Wrong Ann Peiffer?

Ann M. Peiffer

Assistant Professor

Wake Forest Institute for Regenerative Medicine

HQ Phone:  (877) 324-8411

Direct Phone: (336) ***-****direct phone

Email: a***@***.edu

GET ZOOMINFO GROW

+ Get 10 Free Contacts a Month

Please agree to the terms and conditions.

I agree to the  Terms of Service and  Privacy Policy. I understand that I will receive a subscription to ZoomInfo Grow at no charge in exchange for downloading and installing the ZoomInfo Contact Contributor utility which, among other features, involves sharing my business contacts as well as headers and signature blocks from emails that I receive.

THANK YOU FOR DOWNLOADING!

computers
  • 1.Download
    ZoomInfo Grow
    v sign
  • 2.Run Installation
    Wizard
  • 3.Check your inbox to
    Sign in to ZoomInfo Grow

I agree to the Terms of Service and Privacy Policy. I understand that I will receive a subscription to ZoomInfo Community Edition at no charge in exchange for downloading and installing the ZoomInfo Contact Contributor utility which, among other features, involves sharing my business contacts as well as headers and signature blocks from emails that I receive.

Wake Forest Institute for Regenerative Medicine

391 Technology Way \

Winston-Salem, North Carolina,27101

United States

Company Description

The Wake Forest Institute for Regenerative Medicine is dedicated to the discovery, development and clinical translation of regenerative medicine technologies. The institute has used biomaterials alone, cell therapies, and engineered tissues and organs for the ...more

Background Information

Employment History

Instructor

Wake Forest University


Assistant Professor

Mars Hill College


Affiliations

WFU School of Medicine

Associate Research Scientist, Department of Radiation Oncology


University of Connecticut

Pre-doctoral Fellow and Graduate Student


Education

Ph.D.


Web References(13 Total References)


Mycancer Blogs | Uncategorized

mycancerblogs.com [cached]

Ann M. Peiffer, Ph.D., assistant professor of radiation oncology at Wake Forest Baptist, and colleagues looked at how radiation treatment to different brain areas impacts function to help protect cognition for patients during and af...


www.medicexchange.com

Ann M. Peiffer, Ph.D., assistant professor of radiation oncology at Wake Forest Baptist, and colleagues looked at how radiation treatment to different brain areas impacts function to help protect cognition for patients during and after radiation therapy and beyond.


www.yourworldhealthcare.co.uk

Ann M. Peiffer, Ph.D., assistant professor of radiation oncology at Wake Forest Baptist, and colleagues looked at how radiation treatment to different brain areas impacts function to help protect cognition for patients during and after radiation therapy and beyond.
Radiation treatment of organs with cancer is designed to give enough of a dose to be toxic to the cancer tumor with minimal impact to the surrounding tissue and avoid normal tissue death. For treatment of organs like the lung, kidney or liver, doctors know exactly how much radiation to give before organ function is affected. However, the same isn't true for brain tissue, so the researchers worked to develop a "toxicity map" of the brain to preserve function. Peiffer said this is the first attempt to relate treatment dose to brain function, as opposed to brain tissue death. While avoiding normal tissue death is important, it doesn't necessarily help prevent the cognitive and functional problems associated with cancer treatments. "The issue is the toxicity to the brain and its function, which is cognition or how you think, and these functions are affected at a much lower dose of radiation than what causes tissue death," Peiffer said. The toxicity map was created by taking advantage of data from larger clinical trials held at Wake Forest Baptist. In one of those trials, 57 brain cancer survivors returned six months or more after their radiation treatment to determine whether Donepezil, a drug normally used to improve mental function for those with early Alzheimer 's disease, was effective at improving their cognition. Participants completed cognitive testing upon enrollment, and their scores provided the performance data for the toxicity map. The researchers then went back into the medical records to match participants to their individual radiation dose levels and MRIs taken prior to treatment, Peiffer said. "By matching cognitive performance to these measurements, we determined which area of the brain and what dose influenced performance on the cognitive tasks," she said. "This gave us a preliminary look at what areas are important to consider for protecting cognition during our planning for radiation treatment." Peiffer said by looking at the irradiation dose received by specific brain areas important to different cognitive functions, tolerance levels related to function can be established. The exposed amount of these critical brain areas were then related to outcomes of specific tests used to assess cognition or the ability of the patients to think and perform tasks, such as remembering a grocery list or what a drawing looked like, Peiffer said. "As technology advances and we are able to spare increasing amounts of normal tissue and important functional structures during treatment, it is important to understand and be able to predict the threshold that we need to maintain to prevent treatment toxicities in function," Peiffer said. Advances in cancer treatment have increased survivorship rates and the length of time individuals are able to live following treatment, Peiffer said, and quality of life becomes a very important issue for these patients. More research is necessary to validate these data, she said.


www.healthnewsdigest.com

Ann M. Peiffer, Ph.D., assistant professor of radiation oncology at Wake Forest Baptist, and colleagues looked at how radiation treatment to different brain areas impacts function to help protect cognition for patients during and after radiation therapy and beyond.
Radiation treatment of organs with cancer is designed to give enough of a dose to be toxic to the cancer tumor with minimal impact to the surrounding tissue and avoid normal tissue death. For treatment of organs like the lung, kidney or liver, doctors know exactly how much radiation to give before organ function is affected. However, the same isn't true for brain tissue, so the researchers worked to develop a "toxicity map" of the brain to preserve function. Peiffer said this is the first attempt to relate treatment dose to brain function, as opposed to brain tissue death. While avoiding normal tissue death is important, it doesn't necessarily help prevent the cognitive and functional problems associated with cancer treatments. "The issue is the toxicity to the brain and its function, which is cognition or how you think, and these functions are affected at a much lower dose of radiation than what causes tissue death," Peiffer said. The toxicity map was created by taking advantage of data from larger clinical trials held at Wake Forest Baptist. In one of those trials, 57 brain cancer survivors returned six months or more after their radiation treatment to determine whether Donepezil, a drug normally used to improve mental function for those with early Alzheimer 's disease, was effective at improving their cognition. Participants completed cognitive testing upon enrollment, and their scores provided the performance data for the toxicity map. The researchers then went back into the medical records to match participants to their individual radiation dose levels and MRIs taken prior to treatment, Peiffer said. "By matching cognitive performance to these measurements, we determined which area of the brain and what dose influenced performance on the cognitive tasks," she said. "This gave us a preliminary look at what areas are important to consider for protecting cognition during our planning for radiation treatment." Peiffer said by looking at the irradiation dose received by specific brain areas important to different cognitive functions, tolerance levels related to function can be established. The exposed amount of these critical brain areas were then related to outcomes of specific tests used to assess cognition or the ability of the patients to think and perform tasks, such as remembering a grocery list or what a drawing looked like, Peiffer said. "As technology advances and we are able to spare increasing amounts of normal tissue and important functional structures during treatment, it is important to understand and be able to predict the threshold that we need to maintain to prevent treatment toxicities in function," Peiffer said. Advances in cancer treatment have increased survivorship rates and the length of time individuals are able to live following treatment, Peiffer said, and quality of life becomes a very important issue for these patients. More research is necessary to validate these data, she said.


nationalpostdoc.org

Ann Peiffer, Postdoctoral Research Fellow, Wake Forest University School of Medicine; and
Ann Peiffer's RCR Presentation


Similar Profiles

city

Browse ZoomInfo's Business
Contact Directory by City

city

Browse ZoomInfo's
Business People Directory

city

Browse ZoomInfo's
Advanced Company Directory